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SAXS: What is it?

• “Small-angle X-ray Scattering”
• Often used to refer to a continuum of

techniques not all of which particularly
small angle!

• A better term might be “Non-Crystalline
Diffraction” (NCD)

• Seems to be some moves to reserve SAS
for” Small Angle Solution Scattering”
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1D1D

2-3D2-3D

3D3D

Low angle solution or powder diffraction

large macromolecular assembles, model membrane
systems

Fiber diffraction

fiber forming arrays – muscle, collagen, DNA, amyloids,
various carbohydrates, often super-macromolecular scale

Single crystal X-ray diffraction

anything that can crystallize, must be (initially) soluble,
usually relatively small in comparison to the above, molecular
to macromolecular scale

Dimensional Hierarchy of Biophysical (X-ray) techniques
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Model Membrane Systems

• Usually (but not always!) a 1D problem
• Biophysics of membrane fluidity
• Effects of cholesterol, temperature, pressure
• Studies membrane fusion
• Understanding phase behavior for novel

drug, DNA delivery systems
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Tarahovsky et al. 2004 Biophys. J. 87:1054
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Why Fiber Diffraction ?

•  Atomic level structures from crystallography  or NMR =
“gold standard” for structural inferences

• But there is a large class of “fibrous proteins”
    e.g: Actin, myosin, intermediate filaments, microtubules,

bacterial flagella, filamentous viruses, amyloid,
collagenous connective tissue

• Will not crystallize but can be induced to form oriented
assemblies

• Some systems naturally form ordered systems
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Rosalind Franklin’s Pattern from B-DNA

Franklin & Gosling, 1953 Nature 171:740
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Engineered
amyloid fiber

~10Å

~ 4.7Å

“Cross-beta” Structure
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Potato virus X
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Type I collagen

a b

c
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Insect flight-muscle
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Principles I

Packing of Fibers and Diffraction
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Fibers (essentially rods/cylinders)
Usually Hexagonally Packed
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End on view of hexagonal
reciprocal lattice
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Fiber diagram - Insect Muscle
(hexagonal lattice)

Equator
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Principles II

Cylindrical Convolution effects
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X-rays

Fiber Cross-section
Diffraction

Crystallites randomly orientated around the axis
perpendicular to the fiber axis (the ‘R’ – axis: Sum of

Rotation of crystallites assumed = 360 degrees)

R-axis



21

Ewald Sphere

2 θ 

1

 h a*

 k a* 

λ



22

Principles III

Order and disorder in fibrous
specimens
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Ordering in Fibers:

A - Crystalline
fiber

B Semicrystalline
Fiber

C Non-crystalline
fiber

A B C

<I(s)>   =
<|Fm(S)FL(S)|2>

Average over all molecular and lattice orientations



24

Dimensional hierarchy of NCD  patterns

1D

2-3D

3D

Equator (R-axis)

Meridian (Z-axis)
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B-form DNA
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Insect flight-muscle
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Principles IV

Helical diffraction theory
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Fibrous Proteins Usually Show
Helical Symmetry

P = pitch

p = subunit axial
translation distance

R = true repeat distance
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Diffraction from a continuous
Helix
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Bessel Functions and Layer lines

Transform of a cylinder
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Rosalind Franklin’s Pattern from B-DNA

Franklin & Gosling, 1953 Nature 171:740
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Discontinuous Helices

A set of points that are regularly
spaced along a helical path



33

Diffraction From a Discontinuous Helix

α- helix

18 subunits/5 turns

h=1.5 Å

Pitch =5.4 Å

R= 27 Å
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Diffraction from a helix: comparison

The main effect of shifting from a continuous to a discontinuous
helix is to introduce new helix crosses with their origins
displaced up and down the meridian by a distance 1/p
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Helical Selection Rule
Which Bessel function order will turn up on what layer
line for a more complicated helix?
For a non-integral helix (repeats after two or more
turns), with u subunits in t turns, allowed Bessel
functions (n) on layer line l are:

l = m.u   +  n.t

m is an integer indicating translational periodicity index
of helix lattice
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Integral / Non-integral helices

 1/p 

1/R1/R

m=0

m=-1

m=1

m=0, l=n l = 8m + 3n
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Crystals of Helical Molecules
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Multi-Stranded (coiled coil) Helices

If N strands
Only every
Nth Layer -
line allowed
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Geometry of Fiber Patterns
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Fiber Diffraction Often Just Used to
Find Gross Molecular Parameters

• In many cases one can make structural inferences
without a full-blown structure solution

• Helical parameters in Polyamino-acids and nucleic
acids

• Topology of viruses and other large molecular
complexes

• Test hypotheses  concerning influence of inter-
filament lattice spacing
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Rosalind Franklin’s Pattern from B-
DNA

Layer lines  (L) separated by
34 Å nm

Meridional  (M) reflection at
3.4 Å

=> 10 residues/turn

Franklin & Gosling, 1953 Nature 171:740

L

M

M
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Diffraction from Poly L-Alanine
-α-helix

1.5 Å residue trans.

Pitch 5.4Å, R= 27Å

18 residues/5 turns

l=18m+5n

10

15

m=1
m=0

m=-1
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Often a Modeling Approach is
Used

• Use known information & any high
resolution structural information

• Simulate the observed diffraction pattern
with a calculated one

• Use simulated annealing or similar
algorithms to minimize differences
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Diffraction Pattern from
Overstretched Rabbit Muscle
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Model of Regulated Thin Filament from
Muscle from Fiber Data

Poole et al. 2006  J Struct Biol. 155:273
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Fiber Crystallography
• Most fiber “structures” result of model building

studies
• There have been a small number of  Fiber

“structure solutions”.
• TMV by Stubbs, Caspar, Holmes et al. (1970’s

1980’s)
• High resolution structures by Keichi Namba on

bacterial flagella (Yamashita et al., 1998 Nature
SB) aligned by high magnetic fields

• Orgel et al. (2001, 2006) MIR structures of  Type
I collagen from rat tail tendon
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Tobacco mosaic virus
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Data collection:Data collection:

B7

B7

7

B
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Collagen type I sub-
fibrillar structure

Resolution ~ 11 /5.16 Resolution ~ 11 /5.16 ÅÅ

C

a b

c

Orgel et al., 2006 PNAS 103:9001
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Synchrotrons and Fiber
Diffraction

• Early work all done with conventional sources -
why need synchrotron?

• Patterns weak, have high backgrounds, frequently
have multiple closely spaced lattices

• Studies benefit from greatly increased beam
quality

• Greatly increased flux permits time-resolved
experiments
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Why X-ray Diffraction of
Muscle?

• Force producing events occur on the time
scale of ≤ 1 ms

• Relevant size scale is 5 - 50 nm for
molecular machinery

• X-ray diffraction only technique that
allows simultaneous collection of
structural and physiological information
on this time scale

• Can be used on living systems to do real
physiological experiments
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First Diffraction Pattern Using
Synchrotron Radiation

Equatorial pattern from insect flight muscle

August, 1970, DESY
Rosenbaum, Holmes,. & Witz (1971).

 Nature 230, 434-437. 
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X-ray Interference and
Crossbridge Motion in

Active Muscle

V. Lombardi, G. Piazzesi, M. Linari.
M. Reconditi (Florence), M. Irving

KCL
H. Huxley, A. Stewart (Brandeis)

T. Irving (IIT)

BioCAT

A NIH Supported Research Center



54



55

“Swinging Lever Arm
Hypothesis”
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Muscle Filament Substructure
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Interference from myosin heads on
opposite sides of A-band

Fine structure in the
145 Å
reflection from frog
muscle
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Conclusions
• The interference pattern on the meridian can study motion

of crossbridges in living muscle to 100 microsecond time
resolution and 1 Å accuracy

• Crossbridges do, in fact, move axially when muscles
allowed to shorten

• Move more at low loads, less at high loads
• Unexpected finding that under most physiological

shortening conditions ~5-7 nm stroke size, 6 pN force per
bridge

• The  10-12 nm step size expected from crystallography
seen only at very low load

• “The Muscle Problem” essentially solved
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Time-resolved X-ray
Diffraction Studies of
Drosophila Indirect

Flight Muscle in vivo
Michael Dickinson
Mark Frye
(Caltech)
David Maughan
(UVM)
Gerrie Farman (IIT)
Tanya Bekyarova (IIT)
David Gore
Tom Irving
(BioCAT/IIT)
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• Small changes in filament length index thick   
filament stiffness in vivo
•Stores elastic strain energy during the wingbeat
reducing energy consumption

Time-resolved: 14.5 nm Reflection Spacing



64

wing beat phase
0.5 1.00.0 1.5 2.0

%
 in

te
ns

ity
 c

ha
ng

e 500

100

0

19.3 nm first row line spot intensity
(crossbridge attachment) 

upstroke downstroke upstroke downstroke

lengthen shorten lengthen shorten

400

300

200

600



65

Analysis Software

• Rate limiting step is data analysis
• Long tradition of “rolling on your own”
• CCP 13 project http://www.ccp13.ac.uk
• Comprehensive data extraction suite
• Complementary NSF  RCN Stubbs

(Vanderbilt) PI will add angular
deconvolution, other features to suite
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More references:

Good introduction to “Fiber crystallography”:

Chandrasekaran, R. and Stubbs, G. (2001).  Fiber
diffraction.  in International Tables for Crystallography,
Vol. F: Crystallography of Biological Macromolecules
(Rossman, M.G. and Arnold, E., eds.), Kluwer Academic
Publishers, The Netherlands, 444-450.


