

SAXS Applications 2: Biological Non-Crystalline Diffraction

Tom Irving CSRRI. Dept. BCPS, Illinois Institute of Technology

SAXS: What is it?

- "Small-angle X-ray Scattering"
- Often used to refer to a continuum of techniques not all of which particularly small angle!
- A better term might be "Non-Crystalline Diffraction" (NCD)
- Seems to be some moves to reserve SAS for" Small Angle Solution Scattering"

Dimensional Hierarchy of Biophysical (X-ray) techniques

- 1D Low angle solution or powder diffraction large macromolecular assembles, model membrane systems
- 2-3D Fiber diffraction

fiber forming arrays – muscle, collagen, DNA, amyloids, various carbohydrates, often *super-macromolecular scale*

3D Single crystal X-ray diffraction

anything that can crystallize, must be (initially) soluble, usually relatively small in comparison to the above, *molecular to macromolecular scale*

Model Membrane Systems

- Usually (but not always!) a 1D problem
- Biophysics of membrane fluidity
- Effects of cholesterol, temperature, pressure
- Studies membrane fusion
- Understanding phase behavior for novel drug, DNA delivery systems

vsky et al. 2004 Biophys. J. 87:1054

Why Fiber Diffraction ?

- Atomic level structures from crystallography or NMR = "gold standard" for structural inferences
- But there is a large class of "fibrous proteins"
 e.g: Actin, myosin, intermediate filaments, microtubules, bacterial flagella, filamentous viruses, amyloid, collagenous connective tissue
- Will not crystallize but can be induced to form oriented assemblies
- Some systems *naturally* form ordered systems

Rosalind Franklin's Pattern from B-DNA

Franklin & Gosling, 1953 Nature 171:740

Potato virus X

Type I collagen

Insect flight-muscle

11

Principles I

Packing of Fibers and Diffraction

Fibers (essentially rods/cylinders) Usually Hexagonally Packed

Hexagonal Lattice variables

14

Ewald Sphere

15

End on view of hexagonal reciprocal lattice

Fiber diagram - Insect Muscle (hexagonal lattice)

Equator

 $I = |F_M F_L|^2$

Principles II

Cylindrical Convolution effects

Ewald Sphere

21

Principles III

Order and disorder in fibrous specimens

Ordering in Fibers: A - Crystalline fiber

B Semicrystalline Fiber

C Non-crystalline fiber

< I(s) > = $< |F_m(S)F_L(S)|^2 >$

Average over all molecular and lattice orientations

Dimensional hierarchy of NCD patterns

B-form DNA

Insect flight-muscle

Principles IV

Helical diffraction theory

Fibrous Proteins Usually Show Helical Symmetry

P = pitch

p = subunit axial
translation distance

R = true repeat distance

Diffraction from a continuous Helix

Bessel Functions and Layer lines

Transform of a cylinder

Rosalind Franklin's Pattern from B-DNA

Franklin & Gosling, 1953 Nature 171:740

Discontinuous Helices

A set of points that are regularly spaced along a helical path

Diffraction From a Discontinuous Helix

33

Diffraction from a helix: comparison

The main effect of shifting from a continuous to a discontinuous helix is to introduce new helix crosses with their origins displaced up and down the meridian by a distance 1/p

Helical Selection Rule

Which Bessel function order will turn up on what layer line for a more complicated helix?

For a non-integral helix (repeats after two or more turns), with **u** subunits in **t** turns, allowed Bessel functions (n) on layer line *l* are:

l = m.u + n.t

m is an integer indicating translational periodicity index of helix lattice

Integral / Non-integral helices

Fig. IX.8. $I(\xi, \ell)$ for integral and non-integral helices.

m=0, l=n l = 8m + 3n

36

Crystals of Helical Molecules

Multi-Stranded (coiled coil) Helices

If N strands Only every Nth Layer line allowed

Geometry of Fiber Patterns

39

Fiber Diffraction Often Just Used to Find Gross Molecular Parameters

- In many cases one can make structural inferences without a full-blown structure solution
- Helical parameters in Polyamino-acids and nucleic acids
- Topology of viruses and other large molecular complexes
- Test hypotheses concerning influence of interfilament lattice spacing

Rosalind Franklin's Pattern from B-M DNA

Layer lines (L) separated by 34 Å nm

Meridional (M) reflection at 3.4 Å

41

=> 10 residues/turn

Franklin & Gosling, 1953 Nature 171:740

Diffraction from Poly L-Alanine -α-helix

1.5 Å residue trans. Pitch 5.4Å, R= 27Å 18 residues/5 turns l=18m+5n

Often a Modeling Approach is Used

- Use known information & any high resolution structural information
- Simulate the observed diffraction pattern with a calculated one
- Use simulated annealing or similar algorithms to minimize differences

Diffraction Pattern from Overstretched Rabbit Muscle

Model of Regulated Thin Filament from Muscle from Fiber Data

Poole et al. 2006 J Struct Biol. 155:273

Fiber Crystallography

- Most fiber "structures" result of model building studies
- There have been a small number of Fiber "structure solutions".
- TMV by Stubbs, Caspar, Holmes et al. (1970's 1980's)
- High resolution structures by Keichi Namba on bacterial flagella (Yamashita et al., 1998 Nature SB) aligned by high magnetic fields
- Orgel et al. (2001, 2006) MIR structures of Type I collagen from rat tail tendon

Tobacco mosaic virus

Data collection:

Resolution $\sim 11/5.16$ Å

Synchrotrons and Fiber Diffraction

- Early work all done with conventional sources why need synchrotron?
- Patterns weak, have high backgrounds, frequently have multiple closely spaced lattices
- Studies benefit from greatly increased beam quality
- Greatly increased flux permits time-resolved experiments

Why X-ray Diffraction of Muscle?

- Force producing events occur on the time scale of $\leq 1 \text{ ms}$
- Relevant size scale is 5 50 nm for molecular machinery
- X-ray diffraction only technique that allows simultaneous collection of structural and physiological information on this time scale
- Can be used on *living* systems to do *real physiological experiments*

First Diffraction Pattern Using Synchrotron Radiation

Equatorial pattern from insect flight muscle August, 1970, DESY Rosenbaum, Holmes,. & Witz (1971). *Nature* **230**, 434-437.

X-ray Interference and Crossbridge Motion in Active Muscle

V. Lombardi, G. Piazzesi, M. Linari.
M. Reconditi (Florence), M. Irving KCL
H. Huxley, A. Stewart (Brandeis)
T. Irving (IIT)

"Swinging Lever Arm Hypothesis"

Muscle Filament Substructure

56

Interference from myosin heads on opposite sides of A-band

Fine structure in the 145 Å reflection from frog muscle

Fibre 08, load clamp at $T=T_0/2$

Conclusions

- The interference pattern on the meridian can study motion of crossbridges in living muscle to 100 microsecond time resolution and 1 Å accuracy
- Crossbridges do, in fact, move axially when muscles allowed to shorten
- Move more at low loads, less at high loads
- Unexpected finding that under most physiological shortening conditions ~5-7 nm stroke size, 6 pN force per bridge
- The 10-12 nm step size expected from crystallography seen only at very low load
- "The Muscle Problem" essentially solved

Time-resolved X-ray Diffraction Studies of *Drosophila* Indirect Flight Muscle *in vivo*

Michael Dickinson Mark Frye (Caltech) David Maughan (UVM) Gerrie Farman (IIT) Tanya Bekyarova (IIT) David Gore Tom Irving (BioCAT/IIT)

Time-resolved: 14.5 nm Reflection Spacing

- Small changes in filament length index thick filament stiffness *in vivo*
- •Stores elastic strain energy during the wingbeat reducing energy consumption

19.3 nm first row line spot intensity (crossbridge attachment)

Analysis Software

- Rate limiting step is data analysis
- Long tradition of "rolling on your own"
- CCP 13 project http://www.ccp13.ac.uk
- Comprehensive data extraction suite
- Complementary NSF RCN Stubbs (Vanderbilt) PI will add angular deconvolution, other features to suite

References

• Basics:

C. Cantor and P. Schimmel "Biophysical Chemistry part II: Techniques for the study of Biological Structure and Function" Chapter 14. Freeman, 1980

- A terrific introduction to fiber diffraction : John Squire "The Structural Basis of Muscular Contraction" Plenum, 1981
- Definitive Reference on all things non-crystalline:

B.K. Vainshtein "Diffraction of X-rays by Chain Molecules" Elsevier, 1966.

More references:

Good introduction to "Fiber crystallography":

Chandrasekaran, R. and Stubbs, G. (2001). Fiber diffraction. in *International Tables for Crystallography*, *Vol. F: Crystallography of Biological Macromolecules* (Rossman, M.G. and Arnold, E., eds.), Kluwer Academic Publishers, The Netherlands, 444-450.